Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Anomaly-based attack detection methods depend on some form of machine learning to detect data falsification attacks in smart living cyber–physical systems. However, there is a lack of studies that consider the presence of attacks during the training phase and their effect on detection and false alarm performance. To improve the robustness of time series learning for anomaly detection, we propose a framework by modifying design choices such as regression error type and loss function type while learning the thresholds for an anomaly detection framework during the training phase. Specifically, we offer theoretical proofs on the relationship between poisoning attack strengths and how that informs the choice of loss functions used to learn the detection thresholds. This, in turn, leads to explainability of why and when our framework mitigates data poisoning and the trade-offs associated with such design changes. The theoretical results are backed by experimental results that prove attack mitigation performance with NIST-specified metrics for CPS, using real data collected from a smart metering infrastructure as a proof of concept. Thus, the contribution is a framework that guarantees security of ML and ML for security simultaneously.more » « lessFree, publicly-accessible full text available June 1, 2026
-
Anomaly-based attack detection methods that rely on learning the benign profile of operation are commonly used for identifying data falsification attacks and faults in cyber-physical systems. However, most works do not assume the presence of attacks while training the anomaly detectors- and their impact on eventual anomaly detection performance during the test set. Some robust learning methods overcompensate mitigation which leads to increased false positives in the absence of attacks/threats during training. To achieve this balance, this paper proposes a framework to enhance the robustness of previous anomaly detection frameworks in smart living applications, by introducing three profound design changes for threshold learning of time series anomaly detectors:(1) Tukey bi-weight loss function instead of square loss function (2) adding quantile weights to regression errors of Tukey (3) modifying the definition of empirical cost function from MSE to the harmonic mean of quantile weighted Tukey losses. We show that these changes mitigate performance degradation in anomaly detectors caused by untargeted poisoning attacks during training- while is simultaneously able to prevent false alarms in the absence of such training set attacks. We evaluate our work using a proof of concept that uses state-of-the-art anomaly detection in smart living CPS that detects false data injection in smart metering.more » « less
-
Residential smart water meters (SWMs) collect real-time water consumption data, enabling automated billing and peak period forecasting. The presence of unsafe events is typically detected via deviations from the benign profile of water usage. However, profiling the benign behavior is non-trivial for large-scale SWM networks because once deployed, the collected data already contain those events, biasing the benign profile. To address this challenge, we propose a real-time data-driven unsafe event detection framework for city-scale SWM networks that automatically learns the profile of benign behavior of water usage. Specifically, we first propose an optimal clustering of SWMs based on the recognition of residential similarity water usage to divide the SWM network infrastructure into clusters. Then we propose a mathematical invariant based on the absolute difference between two generalized means – one with positive and the other with negative order. Next, we propose a robust threshold learning approach utilizing a modified Hampel loss function that learns the robust detection thresholds even in the presence of unsafe events. Finally, we validated our proposed framework using a dataset of 1,099 SWMs over 2.5 years. Results show that our model detects unsafe events in the test set, even while learning from the training data with unlabeled unsafe events.more » « less
-
Falsified data from compromised Phasor Measurement Units (PMUs) in a smart grid induce Energy Management Systems (EMS) to have an inaccurate estimation of the state of the grid, disrupting various operations of the power grid. Moreover, the PMUs deployed at the distribution layer of a smart grid show dynamic fluctuations in their data streams, which make it extremely challenging to design effective learning frameworks for anomaly based attack detection. In this paper, we propose a noise resilient learning framework for anomaly based attack detection specifically for distribution layer PMU infrastructure, that show real time indicators of data falsifications attacks while offsetting the effect of false alarms caused by the noise. Specifically, we propose a feature extraction framework that uses some Pythagorean Means of the active power from a cluster of PMUs, reducing multi-dimensional nature of the PMU data streams via quick big data summarization. We also propose a robust and noise resilient methodology for learning thresholds based on generalized robust estimation theory of our invariant feature. We experimentally validate our approach and demonstrate improved reliability performance using two completely different datasets collected from real distribution level PMU infrastructures.more » « less
An official website of the United States government
